Some results on cyclic codes over the ring R2,m
نویسندگان
چکیده
Abstract: Let Rk,m be the ring F2m [u1, u2, · · · , uk]/ ⟨ ui , uiuj − ujui ⟩ . In this paper, cyclic codes of arbitrary length n over the ring R2,m are completely characterized in terms of unique generators and a way for determination of these generators is investigated. A F2m -basis for these codes is also derived from this representation. Moreover, it is proven that there exists a one-to-one correspondence between cyclic codes of length 2n , n odd, over the ring Rk−1,m and cyclic codes of length n over the ring Rk,m . By determining the complete structure of cyclic codes of length 2 over R2,m , a mass formula for the number of these codes is given. Using this and the mentioned correspondence, the number of ideals of the rings R2,m and R3,m is determined. As a corollary, the number of cyclic codes of odd length n over the rings R2,m and R3,m is obtained.
منابع مشابه
On Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملSome notes on the characterization of two dimensional skew cyclic codes
A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code. It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$. In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...
متن کامل2-D skew constacyclic codes over R[x, y; ρ, θ]
For a finite field $mathbb{F}_q$, the bivariate skew polynomial ring $mathbb{F}_q[x,y;rho,theta]$ has been used to study codes cite{XH}. In this paper, we give some characterizations of the ring $R[x,y;rho,theta]$, where $R$ is a commutative ring. We investigate 2-D skew $(lambda_1,lambda_2)$-constacyclic codes in the ring $R[x,y;rho,theta]/langle x^l-lambda_1,y^s-lambda_2rangle_{mathit{l}}.$ A...
متن کاملConstacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملSkew Generalized Quasi-cyclic Codes
This article discusses skew generalized quasi-cyclic codes over any finite field F with Galois automorphism θ. This is a generalization of quasi-cyclic codes and skew polynomial codes. These codes have an added advantage over quasi-cyclic codes since their lengths do not have to be multiples of the index. After a brief description of the skew polynomial ring F[x; θ], we show that a skew general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013